Protein kinase-A dependent phosphorylation of transcription enhancer factor-1 represses its DNA-binding activity but enhances its gene activation ability.

نویسندگان

  • M P Gupta
  • P Kogut
  • M Gupta
چکیده

The cAMP-dependent signaling pathway has been implicated in cardiac cell growth/differentiation and muscle gene transcription. Previously, we have identified a cAMP-inducible E-box/M-CAT hybrid motif in the cardiac alpha-myosin heavy chain (alpha-MHC) gene promoter. The two factors, TEF-1 and Max, that bind to this motif are found to physically associate with each other and exert a positive cooperative effect for gene regulation. Here we show that TEF-1, but not Max, is a substrate for protein kinase-A (PK-A)-dependent phosphorylation. TEF-1 is phosphorylated by PK-A at residue serine-102. This post-translational modification of TEF-1 repressed its DNA-binding activity, but not its ability to interact with the Max protein. Replacement of serine-102 in TEF-1 by a neutral or a charged amino acid did not abolish its DNA-binding ability, suggesting that changing a charge at the 102 amino-acid position of TEF-1 was not sufficient to inhibit its DNA-binding activity. We also show that PK-A response of the alpha-MHC gene is stimulated by the presence of wild-type TEF-1 but not by mutant TEF-1 having serine-102 replaced by alanine, suggesting that phosphorylation at this residue accounts for the cAMP/PK-A response of the gene. Thus, these data demonstrate that TEF-1 is a direct target of cAMP/PK-A signaling in cardiac myocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the ETS transcription factor ER81 by the 90-kDa ribosomal S6 kinase 1 and protein kinase A.

The ETS transcription factor ER81 is activated in response to many signals via mitogen-activated protein kinases (MAPKs). However, ER81 is not only phosphorylated on MAPK sites but also at other sites that impact on its transactivation potential. Here we describe that the 90-kDa ribosomal S6 kinase 1 (RSK1), a protein kinase downstream of the extracellular signal-regulated kinase (ERK) subclass...

متن کامل

CCAAT/enhancer binding protein epsilon: changes in function upon phosphorylation by p38 MAP kinase.

C/EBPepsilon, a member of the CCAAT/enhancer binding protein family, is a transcription factor important in neutrophil differentiation. We have determined that it is phosphorylated on multiple serine and threonine residues and can be a target for phosphorylation by a number of kinases. We identified a threonine at amino acid 75, part of a consensus mitogen-activated protein (MAP) kinase site wi...

متن کامل

Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu.

The regulated expression of the ETS transcription factor ER81 is a prerequisite for normal development, and its dysregulation contributes to neoplasia. Here, we demonstrate that ER81 is acetylated by two coactivators/acetyltransferases, p300 and p300- and CBP-associated factor (P/CAF) in vitro and in vivo. Whereas p300 acetylates two lysine residues (K33 and K116) within the ER81 N-terminal tra...

متن کامل

Activation Domains of CCAAT Enhancer Binding Protein : Regions Required for Native Activity and Prostaglandin E2-Dependent Transactivation of Insulin-Like Growth Factor I Gene Expression in Rat Osteoblasts

In osteoblasts, hormones such as prostaglandin E2 that activate protein kinase A increase the translocation of transcription factor CCAAT/enhancer binding protein (C/EBP ) from the cytoplasm to the nucleus where it rapidly induces IGF-I gene expression. In this study, we identified activation and suppression domains in C/EBP using native and heterologous gene promoter assay systems. We demonstr...

متن کامل

Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer.

Sox9 is a high-mobility-group domain-containing transcription factor required for chondrocyte differentiation and cartilage formation. We used a yeast two-hybrid method based on Son of Sevenless (SOS) recruitment to screen a chondrocyte cDNA library and found that the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA-Calpha) interacted specifically with SOX9. Next we found ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2000